Brief | Book | |
---|---|---|
The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms.
This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible. |
Why? - build a strategic, smart and strong analytics capability to transform your institution and ensure a future proof competitive advantage. This type of transformation impacts top-line growth—such as those related to institutional transformation and data utilization—as well as productivity and performance. This discipline includes: Agile and rapid prototyping. Analytics capability assessment and transformation. Remember the conviction: #Analyticship:#BI,#ML,#AI,#BigData,#Analytics,#HiEd:
Pageviews and counting
Saturday, August 22, 2020
Statistical Machine Learning...A Unified Framework
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment