Brief | Book | |
---|---|---|
Written for programmers with a background in another high-level language, this book uses hands-on instruction to teach today’s most compelling, leading-edge computing technologies and programming in Python–one of the world’s most popular and fastest-growing languages. Please read the Table of Contents diagram inside the front cover and the Preface for more details. In the context of 500+, real-world examples ranging from individual snippets to 40 large scripts and full implementation case studies, you’ll use the interactive IPython interpreter with code in Jupyter Notebooks to quickly master the latest Python coding idioms. After covering Python Chapters 1—5 and a few key parts of Chapters 6—7, you’ll be able to handle significant portions of the hands-on introductory AI case studies in Chapters 11—16, which are loaded with cool, powerful, contemporary examples. These include natural language processing, data mining Twitter for sentiment analysis, cognitive computing with IBM Watson™, supervised machine learning with classification and regression, unsupervised machine learning with clustering, computer vision through deep learning and convolutional neural networks, deep learning with recurrent neural networks, big data with Hadoop, Spark™ and NoSQL databases, the Internet of Things and more. |
Why? - build a strategic, smart and strong analytics capability to transform your institution and ensure a future proof competitive advantage. This type of transformation impacts top-line growth—such as those related to institutional transformation and data utilization—as well as productivity and performance. This discipline includes: Agile and rapid prototyping. Analytics capability assessment and transformation. Remember the conviction: #Analyticship:#BI,#ML,#AI,#BigData,#Analytics,#HiEd:
Pageviews and counting
Sunday, August 2, 2020
Python for Programmers: with Big Data and Artificial Intelligence
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment